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How to Determine Likelihood

e Likelihood is probability of difference between
observation and model

obs —sim = (obs —true)—(sim—true)

=err,,. —err,

e Likelihood is the probability that the observed
error and the model/simulation error add
(subtract) to give the discrepancy




Detail in Models

e Many approaches use simple models to
get approximate match and then add
detail

e Examples

— Increased physics (eg coupling particles with
continuum approaches, heat flux in ICF)

— Mesh resolution (coarse meshes may damp
out physics that needs certain level of
resolution)




Simulation Errors

e Assume a model

P = fM (pl,..., pnﬁl,---@k)

p,, are parameters that are varied

- 6,,...0, are unknown initial conditions or parameters
describing additional physics (or sub-grid physics)

e Simulator prediction

Py = fs (Puyeees Pos G- 6, AX AL, L)

e Error
es = fy (Poee PO 6 )= fs (P P16 6, AX AL, L)




Calibration with Coarse Models

e Build response surface for difference
between ‘fine’ and ‘coarse’ models

— calculated error
& — interpolated error




One Parameter Example

e See Los Alamos Science, vol 29

H=15: T&L approximation to FG representation
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Calculate Time Varying Solution Errors

Concentration




Determine Covariance Structure

Cals:)=— (0 -50) (&, (5)-5(6))




Interpolate for Mean Error and Covariance

Error u=>

Example: Error u=10
Error p=15

Linear interpolation 7| = Interpolated Error
for mean error and
covariance

More sophisticated
scheme yields minor
improvements




Results

True oil viscosity, 1 = 13

Maximum likelihood, 6=12.5

Effect of bias
significantly
reduced

Likelihood




How Accurate is the Error Model?

— Detailed Simulation
=== T&L + Error Model

Likelihood curves

Probability




Prediction
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Alternative Interpolation Approach

e Based on Kennedy & O'Hagan (2001)

— Error depends on unknown parameters and
independent variables in specific way

— Discre
variab

— Descri

pancy function only of independent
es

ped in J. Roy. Stat, Soc. B, 2001




Kennedy and O'Hagan Approach

=on (X, 0)+0(x)|+e

. observations
scalar

simulator g(xi) ~ ,077(Xi ’ ‘9) T 5(Xi)

truth
i variable input

history match input
model inadequacy
observation error




Errors for Varying Grid Sizes

o 128x96=12288 cells (fine)
64x48 = 3072 cells
32x24 = 768 cells
16x12 = 192 cells

- Varinlog 0. 5
-Cx 0.2 Cy 0.05




Variability in Solution

realisations
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Saturation Plots

Grid 128x96 Grid 32x24




Solution as a Function of Grid Size
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Error as a Function of Grid Size
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Error as a Function of Solution

e(x,0) =(o-Dn(x,0)+(x)
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Determining Parameterized Fit

Fit
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Determining Parameterized Fit: Slope

Viscosity
constant
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Determining Model Inadequacy

Viscosity = 5
Grid 16x12
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Model Inadequacy with Grid Size

[l
=
3]
4%
5
o
]

o
[4¥]
c
]

o
Q

=

0.4 0.6
Mean Concentration

—64x48
—_—32x24
e 16X12
—8XE6

Viscosity = 5




Error Modelling for the Lorenz Equations

e Lorenz equations are a simple model for chaotic
convective flows in the atmosphere

e Lorenz equations
o =10
0 =28

e Model error
— Use wrong value of p = 28.1
— Match for ocand g




Lorenz Equations Time Series — Exact Model
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Error: Exact - Wrong Model




Misfit Cross Section for Wrong Model
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Likelihood cross section — wrong model

e Truevalues: £ =8/3,0=10




Likelihood Plot with and without Error Model

With error model

25 255 26 265 27 275 28 285 25 255 26 265 27 275 28 285
beta beta




Error Model — 3 x 3 Base Points




Interpolated Errors — 3 x 3 grid




Interpolated Errors — 2 x 2 grid




Error Model — 2 x 2 Base Points




Summary

e Solution Error Models

— Compute errors due to known effects
e Sub-grid physics
e Inadequate resolution

— Function of unknown parameters and
independent variables

— Practical issue

e Need to compute error model with only limited
number of solves of fine model




